本标准参照采用了国际标准ISO348:1981(E)《硬煤分析试样中水分测定方法直接容量法》、ISO 562:1981(E)《硬煤和焦炭挥发分测定方法》和ISO1171: 1981(E)《固体矿物燃料灰分测定方法》。
1 主题内容与适用范围
本标准规定了煤的水分、灰分和挥发分的测定方法和固定碳的计算方法。
本标准适用于褐煤、烟煤和无烟煤。
2 水分的测定
本标准规定了三种煤中水分的测定方法。其中方法A 和方法B 适用于所有煤种:方法C 仅适用于烟煤和无烟煤。
在仲裁分析中遇到有用空气干燥煤样水分进行基的换算时,应用方法A 测定空气干燥煤样的水分。
2.1 方法A(通氮干燥法)
2.1.1 方法提要
称取一定量的空气干燥煤样,置于105~110℃干燥箱中,在干燥氮气流中干燥到质量恒定。然后根据煤样的质量损失计算出水分的百分含量。
2.1.2 试剂
2.1.2.1 氮气:纯度99.9%,含氧量小于100ppm。
2.1.2.2 无水氯化钙(HGB 3208):化学纯,粒状。
2.1.2.3 变色硅胶:工业用品。
2.1.3 仪器、设备
图1 玻璃称量瓶
2.1.3.1 小空间干燥箱:箱体严密,具有较小的自由空间,有气体进、出口,并带有自动控温装置,能保持温度在105~110℃范围内。
2.1.3.2 玻璃称量瓶:直径40mm,高25mm,并带有严密的磨口盖(见图1)。
2.1.3.3 干燥器:内装变色硅胶或粒状无水氯化钙。
2.1.3.4 干燥塔:容量250mL 内装干燥剂。
2.1.3.5 流量计:量程为100~1000mL/min。
2.1.3.6 分析天平:感量0.0001g。
2.1.4 分析步骤
2.1.4.1 用预先干燥和称量过(至0.0002g)的称量瓶称取粒度为0.2mm 以下的空气干燥煤样1±0.1g,至0.0002g,平摊在称量瓶中。
2.1.4.2 打开称量瓶盖,放入预先通入干燥氮气1) 并已加热到105~110℃的干燥箱中。烟煤干燥1.5h,褐煤和无烟煤干燥2h。
注:1)在称量瓶放入干燥箱前10min 开始通气,氮气流量以每小时换气15 次计算。
2.1.4.3 从干燥箱中取出称量瓶,立即盖上盖,放入干燥器中冷却至室温(约20min)后,称量。
2.1.4.4 进行检查性干燥,每次30min,直到连续两次干燥煤样质量的减少不超过0.001g 或质量增加时为止。在后一种情况下,要采用质量增加前一次的质量为计算依据。水分在2%以下时,不必进行检查性干燥。
图2 水分测定管(单位:mm)
2.1.5 分析结果的计算
空气干燥煤样的水分按式(1)计算:
2.2 方法B(甲苯蒸馏法)
2.2.1 方法提要
称取一定量的空气干燥煤样于圆底烧瓶中,加入甲苯共同煮沸。分馏出的液体收集在水分测定管中并分层,量出水的体积(mL)。以水的质量占煤样质量的百分数作为水分含量。
2.2.2 试剂
2.2.2.1 甲苯(GB 684):化学纯。
2.2.2.2 无水氯化钙(HGB 3208):化学纯,粒状。
2.2.3 仪器、设备
2.2.3.1 分析天平:最大称量为200g,感量0.001g。
2.2.3.2 电炉:单盘或多联,并能调节温度。
2.2.3.3 冷凝管:直形,管长400mm 左右。
2.2.3.4 水分测定管:量程0~10mL,分度值0.1mL(见图2)。水分测定管须经过校正(每毫升校正一点),并绘出校正曲线方能使用。
2.2.3.5 小玻璃球(或碎玻璃片):直径3mm 左右。
2.2.3.6 微量滴定管:10mL,分度值为0.05mL。
2.2.3.7 量筒:100mL。
2.2.3.8 圆底蒸馏烧瓶:500mL。
图3 蒸馏装置示意图
2.2.3.9 蒸馏装置(见图3):由冷凝管、水分测定管和圆底蒸馏烧瓶构成。各部件连接处应具有磨口接头。
2.2.4 分析步骤
2.2.4.1 称取25g、粒度为0.2mm 以下的空气干燥煤样,至0.001g,移入干燥的圆底烧瓶中,加入约80mL 甲苯。为防止喷溅,可放适量碎玻璃片或小玻璃球。安置好蒸馏装置。2.2.4.2 在冷凝管中通入冷却水。加热蒸馏瓶至内容物达到沸腾状态。控制加热温度使在冷凝管口滴下的液滴数约为每秒2~4 滴。连续加热,直到馏出液清澈并在5min 内不再有细小水泡出现时为止。
2.2.4.3 取下水分测定管,冷却至室温,读数并记下水的体积(mL),并按校正后的体积由回收曲线上查出煤样中水的实际体积(V)。
2.2.5 回收曲线的绘制
用微量滴定管准确量取0,1,2,3,.,10mL 蒸馏水,分别放入蒸馏烧瓶中。每瓶各加80mL 甲苯,然后按上述方法进行蒸馏。根据水的加入量和实际蒸出的毫升数绘制回收曲线。更换试剂时,需重作回收曲线。
2.2.6 分析结果的计算
空气干燥煤样的水分按式(2)计算:
2.3 方法C(空气干燥法)
2.3.1 方法提要
称取一定量的空气干燥煤样,置于105~110℃干燥箱中,在空气流中干燥到质量恒定。然后根据煤样的质量损失计算出水分的百分含量。
2.3.2 仪器、设备
2.3.2.1 干燥箱:带有自动控温装置,内装有鼓风机,并能保持温度在105~110℃范围内。
2.3.2.2 干燥器:内装变色硅胶或粒状无水氯化钙。
2.3.2.3 玻璃称量瓶:直径40mm,高25mm,并带有严密的磨口盖(见图1)。
2.3.2.4 分析天平:感量0.0001g。
2.3.3 分析步骤
2.3.3.1 用预先干燥并称量过(至0.0002g)的称量瓶称取粒度为0.2mm 以下的空气干燥煤样1±0.1g,至0.0002g,平摊在称量瓶中。
2.3.3.2 打开称量瓶盖,放入预先鼓风1)并已加热到105~110℃的干燥箱中。在一直鼓风的条件下,烟煤干燥1h,无烟煤干燥1~1.5h。
注:1)预先鼓风是为了使温度均匀。将称好装有煤样的称量瓶放入干燥箱前3~5min 就开始鼓风。
2.3.3.3 从干燥箱中取出称量瓶,立即盖上盖,放入干燥器中冷却至室温(约20min)后,称量。
2.3.3.4 进行检查性干燥,每次30min,直到连续两次干燥煤样的质量减少不超过0.001g 或质量增加时为止。在后一种情况下,要采用质量增加前一次的质量为计算依据。水分在2%以下时,不必进行检查性干燥。
2.3.4 分析结果的计算
空气干燥煤样的水分按式(3)计算:
3 灰分的测定
本标准包括两种测定煤中灰分的方法,即缓慢灰化法和快速灰化法。缓慢灰化法为仲裁法;快速灰化法可作为例常分析方法。
3.1 缓慢灰化法
3.1.1 方法提要
称取一定量的空气干燥煤样,放入马弗炉中,以一定的速度加热到815±10℃,灰化并灼烧到质量恒定。以残留物的质量占煤样质量的百分数作为灰分产率。
3.1.2 仪器、设备
3.1.2.1 马弗炉:能保持温度为815±10℃。炉膛具有足够的恒温区。炉后壁的上部带有直径为25~30mm 的烟囱,下部离炉膛底20~30mm 处,有一个插热电偶的小孔,炉门上有一个直径为20mm 的通气孔。
图4 灰皿
3.1.2.2 瓷灰皿:长方形,底面长45mm,宽22mm,高14mm(见图4)。
3.1.2.3 干燥器:内装变色硅胶或无水氯化钙。
3.1.2.4 分析天平:感量0.0001g。
3.1.2.5 耐热瓷板或石棉板:尺寸与炉膛相适应。
3.1.3 分析步骤
3.1.3.1 用预先灼烧至质量恒定的灰皿,称取粒度为0.2mm 以下的空气干燥煤样1±0.1g,至0.0002g,均匀地摊平在灰皿中,使其每平方厘米的质量不超过0.15g。
3.1.3.2 将灰皿送入温度不超过100℃的马弗炉中,关上炉门并使炉门留有15mm 左右的缝隙。在不少于30min 的时间内将炉温缓慢升至约500℃,并在此温度下保持30min。继续升到815±10℃,并在此温度下灼烧1h。
3.1.3.3 从炉中取出灰皿,放在耐热瓷板或石棉板上,在空气中冷却5min 左右,移入干燥器中冷却至室温(约20min)后,称量。
3.1.3.4 进行检查性灼烧,每次20min,直到连续两次灼烧的质量变化不超过0.001g 为止。用最后一次灼烧后的质量为计算依据。灰分低于15%时,不必进行检查性灼烧。
3.2 快速灰化法
本标准包括两种快速灰化法:方法A 和方法B。
3.2.1 方法A
3.2.1.1 方法提要
将装有煤样的灰皿放在预先加热至815±10℃的灰分快速测定仪的传送带上,煤样自动送入仪器内完全灰化,然后送出。以残留物的质量占煤样质量的百分数作为灰分产率。
3.2.1.2 专用仪器:快速灰分测定仪(见附录A)
3.2.1.3 分析步骤
a.将灰分快速测定仪预先加热至815±10℃。
b.开动传送带并将其传送速度调节到17mm/min 左右或其他合适的速度。
c.用预先灼烧至质量恒定的灰皿,称取粒度为0.2mm 以下的空气干燥煤样0.5±0.01g,至0.0002g,均匀地摊平在灰皿中。
d.将盛有煤样的灰皿放在灰分快速测定仪的传送带上,灰皿即自动送入炉中。
e.当灰皿从炉内送出时,取下,放在耐热瓷板或石棉板上,在空气中冷却5min 左右,移入干燥器中冷却至室温(约20min)后,称量。
3.2.2 方法B
3.2.2.1 方法提要
将装有煤样的灰皿由炉外逐渐送入预先加热至815±10℃的马弗炉中灰化并灼烧至质量恒定。以残留物的质量占煤样质量的百分数作为灰分产率。
3.2.2.2 仪器、设备:同3.1.2 条。
3.2.2.3 分析步骤
a.用预先灼烧至质量恒定的灰皿,称取粒度为0.2mm 以下的空气干燥煤样1±0.1g,至0.0002g,均匀地摊平在灰皿中,使其每平方厘米的质量不超过0.15g。盛有煤样的灰皿预先分排放在耐热瓷板或石棉板上。
b.将马弗炉加热到850℃,打开炉门,将放有灰皿的耐热瓷板或石棉板缓慢地推入马弗炉中,先使第一排灰皿中的煤样灰化。待5~10min 后,煤样不再冒烟时,以每分钟不大于2mm 的速度把二、三、四排灰皿顺序推入炉内炽热部分(若煤样着火发生爆燃,试验应作废)。
c.关上炉门,在815±10℃的温度下灼烧40min。
d.从炉中取出灰皿,放在空气中冷却5min 左右,移入干燥器中冷却至室温(约20min)后,称量。
e.进行检查性灼烧,每次20min,直到连续两次灼烧的质量变化不超过0.001g 为止。用最后一次灼烧后的质量为计算依据。如遇检查灼烧时结果不稳定,应改用缓慢灰化法重新测定。灰分低于15%时,不必进行检查性灼烧。
3.3 分析结果的计算
空气干燥煤样的灰分按式(4)计算:
3.4 灰分测定的精密度
灰分测定的重复性和再现性如表2 规定:
4 挥发分测定方法
4.1 方法提要
称取一定量的空气干燥煤样,放在带盖的瓷坩埚中,在900±10℃温度下,隔绝空气加热7min。以减少的质量占煤样质量的百分数,减去该煤样的水分含量 (Mad)作为挥发分产率。
4.2 仪器、设备
4.2.1 挥发分坩埚:带有配合严密的盖的瓷坩埚,形状和尺寸如图5 所示。坩埚总质量为15~20g。
图5 挥发分坩埚
4.2.2 马弗炉:带有高温计和调温装置,能保持温度在900±10℃,并有足够的恒温区(900±5℃)。炉子的热容量为,当起始温度为920℃时,放入室温下的坩埚架和若干坩埚,关闭炉门后,在3min 内恢复到900±10℃。炉后壁有一排气孔和一个插热电偶的小孔。小孔位置应使热电偶插入炉内后其热接点在坩埚底和炉底之间,距炉底20~30mm 处。马弗炉的恒温区应在关闭炉门下测定,并至少半年测定一次。高温计(包括毫伏计和热电偶)至少半年校准一次。
4.2.3 坩埚架:用镍铬丝或其他耐热金属丝制成。其规格尺寸以能使所有的坩埚都在马弗炉恒温区内,并且坩埚底部位于热电偶热接点上方并距炉底20~30mm(见图6)为准。
4.2.4 坩埚架夹:见图7。
图6 坩埚架
图7 坩埚架夹
4.2.5 分析天平:感量0.0001g。
4.2.6 压饼机:螺旋式或杠杆式压饼机,能压制直径约10mm 的煤饼。
4.2.7 秒表。
4.2.8 干燥器:内装变色硅胶或粒状无水氯化钙(HGB3208)。
4.3 分析步骤
4.3.1 用预先在900℃温度下灼烧至质量恒定的带盖瓷坩埚,称取粒度为0.2mm 以下的空气干燥煤样1±0.01g,至0.0002g,然后轻轻振动坩埚,使煤样摊平,盖上盖,放在坩埚架上。褐煤和长焰煤应预先压饼,并切成约3mm 的小块。
4.3.2 将马弗炉预先加热至920℃左右。打开炉门,迅速将放有坩埚的架子送入恒温区并关上炉门,准确加热7min。坩埚及架子刚放入后,炉温会有所下降,但必须在3min 内使炉温恢复至900±10℃,否则此试验作废。加热时间包括温度恢复时间在内。
4.3.3 从炉中取出坩埚,放在空气中冷却5min 左右,移入干燥器中冷却至室温(约20min)后,称量。
4.4 焦渣特征分类
测定挥发分所得焦渣的特征,按下列规定加以区分:
(1)粉状——全部是粉末,没有相互粘着的颗粒。
(2)粘着——用手指轻碰即成粉末或基本上是粉末,其中较大的团块轻轻一碰即成粉末。
(3)弱粘结——用手指轻压即成小块。
(4)不熔融粘结——以手指用力压才裂成小块,焦渣上表面无光泽,下表面稍有银白色光泽。
(5)不膨胀熔融粘结——焦渣形成扁平的块,煤粒的界线不易分清,焦渣上表面有明显银白色金属光泽,下表面银白色光泽更明显。
(6)微膨胀熔融粘结——用手指压不碎,焦渣的上、下表面均有银白色金属光泽,但焦渣表面具有较小的膨胀泡(或小气泡)。
(7)膨胀熔融粘结——焦渣上、下表面有银白色金属光泽,明显膨胀,但高度不超过15mm。
(8)强膨胀熔融粘结——焦渣上、下表面有银白色金属光泽,焦渣高度大于15mm。
为了简便起见,通常用上列序号作为各种焦渣特征的代号。
4.5 分析结果的计算
空气干燥煤样的挥发分按式(5)计算:
4.6 挥发分测定的精密度
挥发分测定的重复性和再现性如表3 规定:
5 固定碳的计算
固定碳按式(6)计算:煤炭化验设备--微机系列量热仪技术标准
1 主题内容与适用范围
本标准规定了微机系列量热仪的技术要求、试验方法、检验规则、标志、包装、运输及贮存。
本标准适用于微机系列量热仪。该仪器主要用于接收外界信息、指令经过处理后对外发出工作指令从而改变系统的工作状态,完成测试结果。
2 引用标准
下列标准所包含的若干条款,通过本标准的引用而构成本标准的条款,出版时所标明的版本均为有效。由于所有标准都要进行修订,因此使用本标准的各方应探讨使用下列标准版本的可能性,并请对本标准提出修正意见和对下述标准受控使用
GB/T213—1996 煤的发热量测定方法
GB/T15464—1995 仪器仪表包装通用技术条件
JJG617—1996 数字温度指示调节仪检定规程
JJG672—2001 氧弹热量计检定规程
MT/T737—1997 量热仪氧弹安全性能检验规范
JB/T9329—1999 仪器仪表运输、运输储存基本环境条件及试验方法
GB/T 2423 电工电子产品基本环境试验规程
GB/T 2828 逐批检查计数抽样程序及抽样表
TL965 邻近干扰排除要求
TL82166 电子元件电磁一致性:辐射损害
3 技术要求
3.1 工作原理
微机系列量热仪通过外桶和内桶温度传感器,采集内桶温度、外桶温度等数据发送给贮存有预先设置理想工作状态软件的单片机,单片机经过对信号的分析处理以后能够自动发出调整或维持工作状态的指令,从而实现对内桶温度等参数的自动控制,达到控制整个测试系统的目的。
3.2 结构及外观要求
3.2.1 采用PCB、LCD、接插件、单片机、轻触键、光藕、晶振、电容、电阻、二三极管、蜂鸣器、排线等经过焊接成硬件电路再烧录软件后与面板装配而成.
3.2.2 硬件电路焊接光洁,元件焊接牢固,元件布局合理.
3.2.3 PVC面板表面应光滑,色泽均匀,不应有裂纹、气泡、凹缩等缺陷;控制器镀层、化学处理表面、喷漆部位应无色差、油漆厚度均匀,无常见的流挂、颗粒、针孔、桔皮、掉漆等。
3.2.4 接插件应完整无损,焊接可靠,插片表面无氧化、无毛刺、与对插件的配合良好。
3. 2. 5 氧弹表面不得有任何划痕、砂眼及损伤、弹盖与弹筒的螺旋部分不得有磨损、锈蚀等缺陷。
3.3 工作条件
3.3.1 额定电压:AC220V;
3.3.2工作电压范围:AC190V ~ AC250V;
3.3.3 环境温度:0℃~35℃
3.3.4 贮存温度:-40℃~70℃
3.3.5 相对湿度:≤80%;
3.4 性能
3.4.1 基本功能
3.4.1.1 自动功能
按电源按键控制器进入测试状态,在此状态,控制器自动控制点火、测温和打印运行状态的检测控制。
3.4.1.2 氧弹在室温下应能承受20Mpa的水压试验。
3. 4. 1. 3 搅拌热
量热仪搅拌器连续搅拌10分钟,量热体系温度升高不超过0.01℃。
3. 4. 1. 4 分辨率为0.001℃
3. 4 .1. 5精度和准确度
精度:将连续测试5次或5次以上苯甲酸试验结果的相对标准差不大于0.20%。
准确度:将苯甲酸作为样品进行5次或5次以上测试,其平均值与标准值相差不超过50J/g.
3.4.2 绝缘电阻
在常温、常湿的环境中,量热仪电源输入端与外壳之间的冷态绝缘电阻应不小于20MΩ。
3.4.3 抗电强度
在常温、常湿的环境中,量热仪电源输入端与壳体之间承受1500V、50Hz的正弦交流电压,在泄漏电流不大于1mA的条件下,历时1min应无击穿或闪络现象。
3.4.4 噪声
干扰性噪声是不允许的。
3.4.5 电磁兼容性
与导线相结合的干扰:脉冲1.1b,脉冲2,脉冲3a、3b符合性能A级要求。脉冲4、4b符合功能状态B.
抗电波辐射干扰:应符合性能情况B的要求。
3.4.6 导线强度
每个芯线的静载荷 ≥40N
3.4.7 插头推压强度
控制器的强度要设计得可承受150N。
3. 4. 8 环境适应性:
在包装运输条件下,应符合JB/T9329—1999要求
A 在40℃的环境中,放置8小时,量热仪应能正常工作。
B 在-25℃的环境中放置8小时,量热仪应能正常工作。
C 湿热试验:在温度40℃,相对湿度80%环境中放置48下时,量热仪应能正常工作。
D 自由跌落:在100cm的高